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Variability is intrinsic to movement in biological systems, including speech.  Although such 
variability has, in the past, been treated as unwanted noise, there is increasing evidence to indicate 
that variability has uses as well.  When learning a new task, variability can lead to faster learning 
via “exploration” [1].  Further, lack of typical variability can be classified in extreme cases as a 
disorder [2].  In speech, variability is seen in virtually every measure taken, and it seems to be 
unavoidable as well [3].  Speakers appear to match the variability in their environment even when 
it does not match their intrinsic rate [4].  The fact that variability does appear to be normally 
distributed [5] suggests that the central tendency is indeed the target for speech sounds.  Online 
compensation might indicate that trajectories are corrected during a syllable’s production [6], but 
a more likely alternative is that speakers have a somatosensory indication of the accuracy of a 
starting position.  Changes in starting position do affect intergestural timing [7], consistent with the 
availability of such information.   

Theories of phonetics have dealt with variability in different ways.  To the extent that linguistic 
phonologies are the beginning of a planning process, they leave any implementation of variability 
to a phonetic level.  The Directions into Velocities of Articulators (DIVA) model has mappings 
between somatosensation locations and acoustic consequences of such configurations [8].  
Although this model can accommodate motor equivalence for producing similar acoustic outputs, 
it is not at all clear how the targets are selected within the target region during production.  
Articulatory Phonology [9, 10] is implemented via a dynamical system, but the basic theory 
generates a single, determinate set of parameters for a given context, resulting in a lack of variance.  
Variability in phonetic measurements has been handled by adding stochastic noise to the model 
[11]. However, even though the pattern of results can be matched in this way, stochastic noise does 
not seem to allow for a differentiation between deliberate (exploratory) variability and inadvertent 
(true noise) variability. 

An approach to useful and harmful variability that has been developed in the motor control 
literature is the Uncontrolled Manifold Analysis (UCM) [12, 13].  Given multiple repetitions of 
successful movement trajectories, it is possible to see which variants are benign (lying on the 
uncontrolled manifold) versus destructive (being part of the controlled manifold, i.e., the path to 
success).  Some attempts have been made to apply this model to speech [14, 15], but the nonlinear 
relations between articulation and acoustics make it difficult to obtain enough tokens to train an 
appropriate model (note that in reaching studies, the relations were mostly linear).  Further, the size 
of the target changes the manifold itself, and the manifold is the way in which the action achieves 
the target.  Smaller targets lead to more constrained actions.  With larger targets, there will be some 
correct productions that may nonetheless be considered non-ideal (“kind of a success”).  The UCM 
says nothing about this effect.  The other major issue missed by focusing only on the target is that 
there is information that often exists in the trajectory itself.  Listeners make use of contextual 
variability when they “parse” the speech signal for coarticulatory effects [16].  Thus, definitions of 
the target and the success are both difficult to define for speech.  

Where does this leave us?  We need to study larger datasets than has been possible in the past.  
However, because even finding a true measure of the shape of the variability requires about 200 
token of the same production [5], direct experimentation is challenging.  Analysis of large corpora 
necessarily excludes a careful analysis of contextual factors (which may contribute to parsing), in 
addition to relying on inaccurate measures of vocal tract resonances [17].  It would therefore seem 
that a combination of modeling, production and perception experiments, elaboration of theories, 
and corpus work is necessary.  The overarching issue is what the target of speech sounds is, and 
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how much we make use of the variability intrinsic to the targets and in individual tokens reaching 
the targets. 
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